
��������������������������������


���������������

����	

�����������	������������	��
����
�������������������������



Bridging the Implementation Gap:
Advancements in Model-Based Concurrent Program Verification

Robert Benjamin Rubbens
Formal Methods and Tools, University of Twente

2025-10-15

1



Imagine, starting your day, reading a newspaper...

2



Imagine, starting your day, reading a newspaper...

2



Imagine, starting your day, reading a newspaper...

Source: ChatGPT

2



Crowdstrike 2024 outage

• Crowdstrike: airport IT security software,
used globally

• 19 July 2024: Crowdstrike software update
• Problem: at start-up, software received 20

instead of 21 pieces of data
• Expensive logic bug: possibly 5 billion

dollars lost1

Source: Smishra1, Wikimedia Commons

1https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause
3

https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause


Software and concurrency

• Logic bugs are not the only problem
• Trend: demands for faster software are

growing
• Solution: more things at the same time

• Concurrency bugs are hard

4



Software and concurrency

• Logic bugs are not the only problem
• Trend: demands for faster software are

growing
• Solution: more things at the same time

• Concurrency bugs are hard

4



Software and concurrency

• Logic bugs are not the only problem
• Trend: demands for faster software are

growing
• Solution: more things at the same time
• Concurrency bugs are hard

4



Formal methods

• One possible solution: formal methods
• Mathematical techniques to prevent faults
• Insight: saying what you want is easier than

saying how
• Can prevent logic and concurrency bugs { P } c { Q }

5



Formal methods and industry

• Formal methods are promising
• But: limited uptake
• Some successes: TLA+ @ AWS, Pulse/Infer @ FB, ...
• No standard tool yet
• Barrier to adoption still too high
• Difficult to express mental models in formal notation

6



Narrowing the gap

How to narrow the gap between mental models and formal methods?

7



Contributions

• Starting point: program verifier VerCors
• Industry experience
• Formal methods and software development
• Formal methods and distributed systems

Indu
st

ry
 e

x
p
er

ie
nc

e
Software develop

.

Distributed sy
st

em
s

8



Part 1/3: industry experience

• Applied VerCors at Technolution to tunnel
control software

• Found two problems: relevance
• But, also: difficult to apply, difficult to

explain
• Goals:

◦ Bring VerCors closer to developer mental
models

◦ Improve language support

9



Part 2/3: Formal methods and software development

• Unify formal methods and software
development

• Novel combination:
◦ JavaBIP: component-based software

development
◦ VerCors: concurrent program verifier

• Showed feasibility, effectiveness, reuse
Source: Anastasia Mavridou

10



Part 3/3: Formal methods and distributed systems

• Choreographies are a DSL for designing
distributed systems

• We extended existing verification tool
VeyMont:

◦ Shared memory
◦ Parameterization

• Case studies done with VeyMont can now be
more realistic

11



Part 3/3: Formal methods and distributed systems

• Choreographies are a DSL for designing
distributed systems

• We extended existing verification tool
VeyMont:

◦ Shared memory
◦ Parameterization

• Case studies done with VeyMont can now be
more realistic

11



Conclusion

• Formal methods are promising
• But: uptake is limited
• Improved insights into the needs of the industry
• Created and improved two tools to better cater to industry needs
• Also, showing their effectiveness

12



��������������������������������


���������������

����	

�����������	������������	��
����
�������������������������



13



14



15



16


